Portada

WIDEBAND LOW NOISE AMPLIFIERS EXPLOITING THERMAL NOISE CANCE IBD

SPRINGER
01 / 2011
9781441952660
Inglés

Sinopsis

Preface. Chapter 1: Introduction. 1.1 Introduction. 1.2 Motivations. 1.3 Outline. 1.4 References. Chapter 2: Systematic Generation of All Elementary Wide-Band Amplifiers. 2.1 Introduction. 2.2 The Systematic Generation Methodology. 2.2.1 2VCCS graph database: generation and properties. 2.3 Functional Selection of All Elementary Wide-band Amplifiers. 2.3.1 STEP1: Source/Load impedance and functional requirements. 2.3.2 STEP2: Constraints on the two-port {A, B, C, D} parameters. 2.3.3 STEP3: 2VCCS graphs database exploration. 2.3.4 STEP4: Transistor circuits implementation. 2.4 Conclusions. 2.5 References. Chapter 3: 2-MOST Amplifiers: Analysis and Design. 3.1 Introduction. 3.2 Modelling for Hand Calculations. 3.3 Two-port Noise Factor F. 3.4 Amplifiers Performance Analysis. 3.4.1 Small-signal transfers: ZIN, ZOUT, AVF and AVR. 3.4.2 Noise factor. 3.5 Design Example: a 50-900MHz Variable Gain LNA. 3.5.1 Bandwidth. 3.5.2 Noise factor. 3.6 Design. 3.7 Measurements. 3.8 Conclusions. 3.9 References. Chapter 4: Wide-Band Low-Noise Techniques. 4.1 Introduction. 4.2 Noise Factor Considerations. 4.3 F to Impedance Matching Trade-off in Elementary Wide-band LNAs. 4.4 Working Around the Trade-off. 4.5 Breaking the Trade-off via Negative Feedback. 4.6 The Noise Cancelling Technique. 4.6.1 Breaking the 1+NEF barrier. 4.6.2 Noise cancelling generalisation. 4.6.3 Intuitive analysis of noise cancelling. 4.7 Comparison of Noise-Cancelling LNAs. 4.7.1 Noise factor versus device gm2?RS. 4.7.2 Noise factor versus power consumption. 4.7.3 Noise factor versus power consumption with biasing noise. 4.8 Noise Cancelling Properties. 4.8.1 Robustness. 4.8.2 Simultaneous noise and power matching. 4.8.3 Distortion cancelling. 4.9 High-Frequency Limitations to Noise and Distortion Cancelling. 4.9.1 Noise. 4.9.2 Distortion. 4.9.3 Frequency compensation. 4.10 Summary and Conclusions. 4.11 References. Chapter 5: Design of a Decade Bandwidth Noise Cancelling CMOS LNA 5.1 Introduction. 5.2 Design Requirements and LNA Schematic. 5.3 Analysis of the Noise Factor and Bandwidth. 5.3.1 F for in-band frequencies. 5.3.2 F at high frequencies. 5.3.3 Bandwidth. 5.4 LNA Design: NF at Minimum Power Dissipation. 5.5 Validation of the Design Procedure. 5.6 Final Design. 5.7 Measurements. 5.8 Summary and Conclusions. 5.9 References. Chapter 6: Summary and Conclusions. 6.1 Summary and Conclusions. 6.2 References. Appendix A: Two-port Amplifiers Stability and {A, B, C, D} Parameters. Appendix B: Biasing noise in Noise-cancelling Amplifiers. Appendix C: Two-port Amplifiers Noise and Power Matching. Appendix D: All 1- and 2-VCCS Graphs. Index. Author Biographies.

PVP
245,04